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The accuracy and efficiency of a density functional is dependent on the basic ingredients it uses and
how the ingredients are built into the functional as a whole. An iso-orbital indicator based on the electron
density, its gradients, and the kinetic energy density, has proven an essential dimensionless variable that allows
density functionals to recognize and correctly treat various types of chemical bonding, both strong and weak.
Density functionals constructed around the iso-orbital indicator usually require dense real-space grids for
numerical implementation that deteriorate computational efficiency, with poor grid convergence compromising
the improved accuracy. Here, an improved iso-orbital indicator is proposed based on the same ingredients that
retains the capability to identify the same chemical bonds while significantly relieving the requirement of dense
grids. Furthermore, the improved iso-orbital indicator gives an improved recognition for tail regions of electron
densities and is divergence-free for the exchange-correlation potential. The improved iso-orbital indicator is
therefore expected to be the prime choice for further density functional development.
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Density functional theory (DFT) is, in principle, exact
for the ground-state energy and electron density of a system
of electrons under a scalar external potential, conventionally
solved through a set of Kohn-Sham (KS) auxiliary single-
particle Schrödinger-like equations [1,2]. In practice, how-
ever, the exchange-correlation energy, an essential but usually
small portion of the total energy, must be approximated as
a functional of the electron density. The computational effi-
ciency of this scheme and the accuracy of modern exchange-
correlation approximations has resulted in DFT becoming
one of the most widely used electronic structure theories
and arguably the only practical method for high-throughput
discovery of novel materials currently available.

Exchange-correlation approximations can be broadly cate-
gorized by the ingredients used into five levels of increasing
nonlocality [3]. The accuracy of an approximation usually in-
creases when more ingredients are included through increased
flexibility though this enhancement is often accompanied by a
deterioration of efficiency, especially when nonlocal informa-
tion is included. It is therefore critical to understand the ingre-
dients of common density functional approximations and how
they can be utilized to increase the accuracy of a functional
while maximizing the possible computational efficiency. As
functionals of higher levels are usually developed based on
functionals of lower levels, knowledge obtained for the ingre-
dients and their combinations in lower-level functionals can be

*jfurness@tulane.edu
†jsun@tulane.edu

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

transferred to the development of more complex functionals at
higher levels.

The lowest three levels of efficient semilocal functionals
include the local spin density approximation (LSDA) [2,4–8],
the generalized gradient approximations (GGAs) [4,9–16],
and meta-GGA [17–31]. LSDA uses only the electron density
and recovers the uniform electron gas (UEG) limit. GGAs
add the electron density gradient from which two standard di-
mensionless variables are constructed; s = |∇n|/(2kFn) with
kF = (3π2n)1/3 relevant for exchange and tc = |∇n|/(2ksn)
with ks = √

4kF /π for correlation [32] measure the inho-
mogeneity of electron densities at the length scales of local
Fermi wavelength 2π/kF and Thomas screening length 1/ks,
respectively. Commonly used meta-GGAs develop the func-
tional to include more semilocal ingredients, commonly the
kinetic energy density τ (r) = 1/2

∑occ.
i |∇ϕi(r)|2 where {ϕi}

are KS orbitals. Based on their ingredients, the recently de-
veloped nonseparable gradient approximation (NGA) [33,34]
and meta-NGA [25,35] can be included as levels 2 and 3,
respectively.

The inclusion of τ in meta-GGAs naturally arises from the
Taylor expansion of the exact spherically averaged exchange
hole [36] and provides a simple and straightforward way
to make a correlation functional exactly one-electron self-
interaction free [19]. The flexibility due to the inclusion of
τ improves the accuracy of meta-GGAs over GGAs, by either
better fitting to experimental data empirically [18,23,28,31]
or satisfying more exact constraints and appropriate norms
nonempirically [21,24,26,29,30]. Early attempts [21,24] and
the recent Tao-Mo functional [30] construct nonempirical
meta-GGAs through an iso-orbital indicator defined as

z = τ vW

τ
, (1)

where τ vW(r) = |∇n(r)|2/8n(r) is the von Weiszäcker kinetic
energy density that recovers τ in the single-orbital limit.
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While z can identify single-orbital densities, z = 1, and slowly
varying densities, z → 0, it is unable to distinguish slowly
varying densities from the noncovalent closed shell over-
lap densities important in intermediate-range van der Waals
bonding [37]. A different indicator widely used in empirical
constructions [23,28,35] is

t−1 = τ

τUEG
, (2)

where τUEG = (3/10)(3π2)2/3n5/3 is the kinetic energy den-
sity of uniform electron gas. While the t−1 indicator has been
shown to differentiate covalent from noncovalent bonding,
it cannot uniquely identify single-orbital regions for which
t−1 = 5s2/3. This is likely one of the major reasons for over-
fitting in the M06L meta-GGA and the resulting numerical
stability problem of this functional [37]. t−1 is semi-infinite,
[0,∞), and usually mapped to a finite domain via w = (1 −
t−1)/(1 + t−1) = (τUEG − τ )/(τUEG + τ ).

A further iso-orbital indicator has been constructed,

α = τ − τ vW

τUEG
, (3)

which is able to uniquely identify single-orbital, slowly vary-
ing and noncovalent overlap densities as α = 0, ≈1 and
�1, respectively. This indicator was included alongside z in
earlier meta-GGA functionals [21,24] to enforce the correct
fourth-order gradient expansion [38], though its importance
for characterizing chemical environments was not fully rec-
ognized until later [37]. The α variable is directly related to
the electron localization function (ELF) of Refs. [39,40] as
fELF = 1/(1 + α2) which has been used to give a rigorous
topological classification of chemical bonding [41–43]. In
addition, recent α-dependent functionals [29] have been found
to effectively handle properties that have traditionally been
challenging for semilocal functionals [44–48], including the
intermediate-range van der Waals bonding [47] and metal-
insulator transitions [48].

Despite the general success enjoyed by recent meta-GGA
functionals for a wide range of systems [21,23,27–29,46–49],
it has been observed that many meta-GGAs suffer numerical
instabilities in self-consistent field (SCF) calculations [49,50],
and have an unacceptably slow convergence with respect
to the density of the numerical integration points [51,52].
The increased computational cost of dense numerical grids
severely limits the usefulness of many meta-GGA function-
als and restricts the complexity of systems to which they
can be applied. Additionally, the uncertainty in overall grid
convergence necessitates a time-consuming validation that
calculated properties are properly converged in grid density,
placing an undesirable burden of expertise on the user.

Within more advanced α-based functionals, it is under-
stood that this numerical sensitivity originates from sharp
oscillations in the exchange-correlation potential that are only
properly dured by very fine grids [49], particularly in inter-
shell regions where the local orbital overlap character can
vary rapidly. Here we show that the rapid variations in the
derivatives of α are largely responsible for these undesir-
able oscillations. Further, we propose a modified iso-orbital
indicator quantity, termed β, from which new functionals can

TABLE I. Values of common iso-orbital indicators for typical
chemical environments.

Region t−1 z α β

Single orbital 5s2/3 1 0 0
Slowly varying density ≈1 ≈0 ≈1 ≈ 1

2
Noncovalent bonding �1 ≈0 �1 1

2 � β < 1

be constructed that do not suffer this problem,

β(r) = τ (r) − τ vW(r)

τ (r) + τUEG(r)
(4)

= α(r)

(
τUEG(r)

τ (r) + τUEG(r)

)
. (5)

= α(r)

α(r) + 5s(r)2

3 + 1
. (6)

The β variable contains similar information about local orbital
overlap environments to α while having smoother derivatives
more easily amenable to evaluation on numerical grids. This
allows local orbital overlap information to be used in func-
tionals at the meta-GGA level and higher without suffering
the numerical problems associated with analogous functions
of the α variable.

The close relationship between the α and β variables
can be shown by examining their limits in the three typi-
cal orbital overlap regions. Firstly, in single-orbital regions
τ (r) = τ vW(r) and α(r) = β(r) = 0. This bound is important
in exchange-correlation functional development, allowing the
strong lower bound on exchange energy as well as correlation
energy to be enforced for all spin-unpolarized single-orbital
systems [29,53,54]. Secondly, in slowly varying densities
τ vW(r) → 0 and τ (r) ≈ τUEG(r), so α(r) ≈ 1 and β(r) ≈
1/2. Note α and β have different density gradient expansions
in the slowly varying density limit (see Supplemental Material
[55]). Finally, in noncovalent density overlap regions where
n(r) → 0, τUEG(r) → 0 as n(r)5/3 while τ (r) → 0 as n(r)
and τ vW(r) = 0 at bond centers, and thus the denominator,
τUEG(r), decays faster than the numerator, τ (r) − τ vW(r),
leading to α(r) → ∞. Here β(r) approaches 1 however,
since both its numerator and denominator decay as n(r). The
relations between α, β, and other iso-orbital indicators are
summarized in Table I.

This similarity between α and β in highlighting the local
orbital overlap environment is shown graphically in Figs. 1(a)
and 1(b) for the lithium and carbon atoms, respectively (see
Supplemental Material [55] for a similar comparison for a
wider range of atomic and small molecule systems). The
lithium and carbon atoms were chosen as typically difficult
systems with pronounced numerical sensitivity for density
functionals. The similar intershell peak behavior is clearly
visible for both variables as a rise away from single-orbital-
like values of the 1s core. The difference between α and β is
seen in the tail region of the carbon atom for the majority spin
electrons, where α diverges upward while β decays slowly
toward 0. For the minority spin, both α and β approach 0 in the
tail region. In general, β consistently indicates the tail regions
of all densities with 0 as τ vW(r) is the leading order of τ (r)
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(a) (b)

(c) (d)

FIG. 1. Radial plots of α(r) and β(r) functions and their density derivatives for the lithium and carbon atoms. The α (solid red) and
β (dashed blue) functions and density derivatives are plotted for the majority (Maj., �) and minority(Min., �) spin from self-consistent
Perdew-Burke-Ernzerhof (PBE) [11] densities. Radial distances are in units of Bohr.

there, and identifies tail regions completely when combined
with the dimensionless reduced density gradient, s, that is
divergent. This is impossible for α since α(r) = 0 for the
tail regions of single-orbital systems and α → ∞ otherwise.
This shortcoming results in α-based meta-GGAs biasing tail
regions toward a uniform electron gas description, rather than
that of a single orbital [56].

The benefit of β over α for functional development is
most clearly seen in the derivatives with respect to density,
exemplified in Figs. 1(c) and 1(d) for the lithium and carbon
atoms, respectively. The derivative of β with respect to density
does not show the same rapid variation as that of α in
intershell and valence regions where density is significant.
Similar behavior is observed for |∇n| and τ derivatives, as
noted for α in Ref. [49] and in the more complex molecular
systems presented in the Supplemental Material.

The much better behaved derivatives of β over those of
α remedy the numerical problems observed in α-dependent
meta-GGA functionals. To validate this, we modify the exist-
ing meta-GGA made simple 2 (MS2) functional [57] by sub-
stituting 2β in place of α within the exchange enhancement
factor Fx(s, α), defined by

Emeta-GGA
x [n] =

∫
eUEG

x (n)F meta-GGA
x (s, α)dr, (7)

where eUEG
x (n) = −3(3π2)1/3n4/3/4π is the exchange energy

density of uniform electron gas. MS2 has a simple construc-
tion of F MS2

x (s, α) = F 1
x (s) + f MS2

x (α)[F 0
x (s) − F 1

x (s)] with

f MS2
x (α) = (1 − α2)3

1 + α3 + bα6
(8)

that interpolates between F 0
x (s), a GGA for single-orbital sys-

tems (α = 0), and F 1
x (s), a GGA for slowly varying densities

(α ≈ 1), and extrapolates to (α � 1) for noncovalent bonds.
This functional was chosen for the relatively simple con-

struction and well reported numerical instabilities [49]. Mod-
ification of the simple exchange enhancement factor for β de-
pendence was trivial by replacing α with 2β to guarantee the
interpolation between F 0

x (s) for single-orbital systems (2β =
α = 0) and F 1

x (s) for slowly varying densities (2β ≈ α ≈ 1).
The resulting β-modified meta-GGA functional is termed
MS2β. The parameter b is determined such that f MS2β

x (β =
1) = f MS2

x (α → ∞) for noncovalent bonds. These minor ad-
justments to the balances between internal parameters to
preserve exact constraints obeyed by the parent functional
are summarized in Table II and detailed in the Supplemental
Material [55]. MS2β was implemented into the TURBOMOLE

package [58] using the XCFUN library [59] to automatically
evaluate functional derivatives. We present MS2β simply as

TABLE II. Parameters for the MS2 and MS2β functionals. The
notation of Ref. [57] is followed, with constants k0 = 0.174 and
μGE = 10/81.a

MS2 κ = 0.504 b = 4.0 c = 0.14607a

MS2β κ = 0.504 b = (27bMS2 − 9)/64 c = 0.14607

aThe original publication of MS2 [37] gives c = 0.14601. We find
this gives a small error (on the order of μEh) in the exchange energy
of the hydrogen atom that is corrected using c = 0.146 07. We note
however, that this change has negligible impact on MS2 predicted
atomization energies and barrier heights.
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FIG. 2. Convergence behavior with respect to numerical grid density of conventional and the β-modified meta-GGA made simple 2 (MS2)
functional [57] for (a) lithium and (b) carbon atoms. Difference in self-consistent atomic total energy relative to the total energy from a
converged grid of 520 points (Econv.) for the MS2 (red, ×) and MS2β (blue, dashed, +) functionals using the aug-cc-pVQZ basis set [60]. An
acceptable convergence is assumed when difference remains below the SCF convergence tolerance of 1μEh (dotted line).

a convenient means for preliminary investigation of the β

variable rather than as a viable general functional.
The grid convergence of the MS2 and MS2β functionals is

shown in Fig. 2 as a plot of the difference in self-consistent
electronic energy relative to the same calculation using a very
fine benchmark grid, as a function of grid point density, for
the carbon and lithium atoms. In both cases the β-modified
functional shows a convergence in total energy at lower grid
density than the parent α functional, indicated by the differ-
ence to the benchmark grid energy remaining below the SCF
convergence threshold of 1μEh.

As previously noted, the sensitivity of α-dependent func-
tionals to numerical integration grid point density is un-
derstood as an effect of rapid oscillations in the exchange-
correlation potential, v̂xc, expressed in the generalized Kohn-
Sham scheme [49,61,62] as

∫
ϕpv̂xcϕqdr =

∫
ϕp

∂exc

∂n
ϕqdr +

∫
∂exc

∂∇n
· ∇(ϕpϕq)dr

+ 1

2

∫
∇ϕp ·

(
∂exc

∂τ

)
∇ϕqdr. (9)

Here, exc is the exchange-correlation energy density of a
meta-GGA functional. Hence, functionals showing sharp os-
cillations in functional derivatives will show sharp variations
in exchange-correlation potential that are challenging to dure
in numerical integration schemes. By modifying meta-GGA
functionals to use the β indicator in place of α, oscillations
in functional derivatives are minimized and the resulting
exchange-correlation potential is smoothed, as exemplified by
MS2 and MS2β which have the same exchange enhancement
factor form in terms of α or 2β dependence. We can therefore
understand the reduced grid sensitivity of the β-modified
functional as a consequence of smoother functional deriva-
tives in the intershell and valence regions producing smoother
exchange-correlation potentials that can be more easily dured
by numerical integration grids.

The divergences of derivatives at tails seen in Figs 1(c)
and 1(d) are not problematic for the exchange-correlation po-
tential of analytic β-dependent meta-GGAs because eUEG

x (n)
decays faster than the divergence of β derivatives there.
However, the divergences of α derivatives at tails are much
stronger than those of β, also seen in Figs 1(c) and 1(d), and
can cause problems for the exchange-correlation potential of
α-dependent meta-GGAs. At the tail regions, τ decays as n,
while τUEG decays more quickly as n5/3, so the derivative of
α with respect to, for example, τ diverges as n−5/3, faster
than the decay of eUEG

x (n) which is proportional to n4/3.
This can lead to divergences of exchange-correlation potential
for α-dependent meta-GGAs as long as the derivative of
F meta-GGA

x (s, α) with respect to α is nonzero at the tail. Such
nonzero values are encountered in the meta-GGA made very
simple (MVS) [54] and SCAN [29] meta-GGAs at the tail re-
gions of single-orbital systems [63]. This behavior is avoided
in β as the decay of both the numerator and denominator of β

is determined by τ as decaying with n.
The potential divergence of exchange-correlation potential

at tail regions resulting from the strong divergence of α deriva-
tives is undesirable and problematic especially for the con-
struction of pseudopotentials from isolated atoms, acting as
a hitherto unrecognized additional restriction on α-dependent
functional design. This restriction was not previously noticed
and is not obeyed by the MVS [54] and SCAN [29] function-
als, though it is fortuitously obeyed by MS2. This restriction
is not necessary in β-dependent functionals however, as the
asymptotic behavior of β is properly controlled and thus β

offers simplicity and greater flexibility in functional design
compared to the α indicator.

To show that the MS2β functional retains the ability to
effectively distinguish different chemical environments we
first test it against the small data sets of atomization energies
(AE6) and barrier heights (BH6) [66,67], the results for
which are shown in Table III, with DFT grid convergence
behaviors shown in the Supplemental Material [55]. For these
small datasets the accuracy of the β-modified functional is
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TABLE III. Mean error (ME) and mean absolute error (MAE)
in kcal mol−1 for the small test sets of atomization energy (AE6)
and reaction barrier height (BH6) for the PBE [11], MS2, and MS2β

functionals. All calculations were performed fully self-consistently
with the 6-311++G(3df,3pd) basis set [64,65] on a dense numerical
grid (TURBOMOLE level 7).

PBE MS2 MS2β

AE6 (ME) 12.47 −0.78 3.95
AE6 (MAE) 15.58 4.40 6.10
BH6 (ME) −9.67 −5.79 −6.32
BH6 (MAE) 9.67 5.79 6.32

only slightly reduced compared to the original and remains
significantly better than that of the PBE GGA.

The different behavior of the α and β variables is most
pronounced in regions of noncovalent density overlap where
α(r) � 1.0 and β is in the region 0.5 � β(r) < 1.0. This dif-
ference is most clearly examined in the Ar2 dissociation curve,
for which it has been shown meta-GGA functionals can be ac-
curate around equilibrium [29,47,57]. The dissociation curves
for Ar2 are shown in Fig. 3 for both the conventional and β-
modified MS2 functionals with benchmark data included from
Ref. [68] for comparison. In contrast to the small test sets,
MS2β closely matches the performance of the original MS2
functional across the whole of the binding curve showing far
greater accuracy than that of the PBE GGA. The performance
of MS2β for AE6, BH6, and the Ar2 diatomic in comparison
to those of MS2 and PBE clearly demonstrates its capability
to recognize different chemical environments. As the MS2
meta-GGA is a simple density functional that only satisfies a
subset of exact constraints relevant to meta-GGAs [26,29,37],
a simple substitution of β for α cannot guarantee the accuracy
of the original MS2 functional as seen in the AE6 and BH6
data sets.

In conclusion, we have identified that sharp oscillations
in the functional derivatives of the commonly employed di-
mensionless variable α can cause numerical sensitivities in
meta-GGA calculations. We have addressed these sensitivities
by constructing a related dimensionless variable, β, which
imparts similar information about the local orbital overlap en-
vironment while having smoother functional derivatives. The
enhanced numerical stability, improved recognition of tail re-
gions, and freedom from restrictions on exchange-correlation
potential presented by β are an appealing opportunity for
enhancing the performance of future functionals for both the
meta-GGA level and higher level fully nonlocal functionals.

We have used the simple MS2 meta-GGA functional as a
proof of concept by substituting 2β for α in the functional

FIG. 3. Dissociation curve of the argon dimer. Calculated using
PBE (green, 	), MS2 (red, ×), and MS2β (blue, +) functionals.
Calculations performed self-consistently using the aug-cc-pV5Z ba-
sis set and a very fine numerical grid (grid 7 of the TURBOMOLE

program). A benchmark curve (black) is included from Ref. [68].

with minimal adjustment of internal parameters. We find im-
proved numerical performance in all cases, with the new func-
tional giving converged properties from much coarser inte-
gration grids than the original MS2 functional. Testing MS2β

against MS2 and PBE on small molecules clearly shows the
capability of β to recognize different chemical environments
at the functional performance level, and suggests the need
for embedding β into more sophisticated density functional
constructions. We are optimistic that wholly novel functionals
utilizing the β iso-orbital indicator can provide ever greater
accuracy and utility for the wider DFT community.
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